forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
ignore #1
Closed
Closed
ignore #1
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This allows scripts loading this file to know the list of tests.
* Fix a type-instability in sparse `findmin`/`findmax` The helper function `_findr` would usually return a `Vector` as first argument, but would use a `SparseMatrixCSC` in the empty case. Fix by always using `Vector`. * Make sparse `hvcat` inferable This also requires making sparse `vcat` and `hcat` inferable in the vararg case which in turn requires a different way to determine the resulting index type, now implemented similar to `promote_eltype`.
use `textwidth` in Printf for `%s` and `%c` widths
) This adds a proof-of-concept demonstration of two new buildkite plugins: * `cryptic` adds secrets management to privileged pipelines. These pipelines cannot be freely modified; their integrity is verified against a signature maintained by committers with a secret key. This allows certain portions of the CI configuration (which are privileged and can decrypt encrypted files/environment variables) to remain public, but read-only to the general populace. * `sandbox` adds a generic sandboxing mechanism that allows CI steps to be run within user-provided rootfs images. We're using these here to provide compiler toolchains for the `llvm-passes` CI steps, and the plan is to eventually provide _all_ compiler toolchains through such rootfs images.
I want to use this in Cthulhu, which uses `IRCode` for optimized code instead of `CodeInfo`.
…g#41248) Co-authored-by: Daniel Karrasch <daniel.karrasch@posteo.de>
This was not an external method table, it is just a normal variable binding. This was causing the precompile files to be corrupted, since we use normal variables that look like this one at https://github.com/JuliaLang/julia/blob/dc2befcffc7412768097c2a2a6819724a4745aeb/base/compiler/utilities.jl#L139-L140 Fixes JuliaLang#41156
Co-authored-by: Dilum Aluthge <dilum@aluthge.com>
This includes libraries from GCC 11.
…ecent redefinition.
* Move sanitizer compiler definitions to platform.h. * Define ASAN defaults in the loader executable. * Default to no RTLD_DEEPBIND for LBT when using ASAN. * Simplify contrib/asan/ Co-authored-by: Takafumi Arakaki <aka.tkf@gmail.com>
The methods were added in JuliaLang#38216.
…Range{<:Rational})` (JuliaLang#41479) * Fix length(::AbstractUnitRange), faster length(::AbstractUnitRange{<:Rational})
Add support for USDT probes
Fixes one of the issues mentioned in JuliaLang#24526
…ted_ts" (JuliaLang#41722) Also reverts "fixup to pull request JuliaLang#38405 (JuliaLang#41641)" Seems to be causing hanging in CI testing. This reverts commit 5af1cf0 and this reverts commit 5a16805, reversing changes made to 02807b2.
(this PR is the final output of my demo at [our workshop](https://github.com/aviatesk/juliacon2021-workshop-pkgdev)) This PR eliminated much of runtime dispatches within our type inference routine, that are reported by the following JET analysis: ```julia using JETTest const CC = Core.Compiler function function_filter(@nospecialize(ft)) ft === typeof(CC.isprimitivetype) && return false ft === typeof(CC.ismutabletype) && return false ft === typeof(CC.isbitstype) && return false ft === typeof(CC.widenconst) && return false ft === typeof(CC.widenconditional) && return false ft === typeof(CC.widenwrappedconditional) && return false ft === typeof(CC.maybe_extract_const_bool) && return false ft === typeof(CC.ignorelimited) && return false return true end function frame_filter((; linfo) = sv) meth = linfo.def isa(meth, Method) || return true return occursin("compiler/", string(meth.file)) end report_dispatch(CC.typeinf, (CC.NativeInterpreter, CC.InferenceState); function_filter, frame_filter) ``` > on master ``` ═════ 137 possible errors found ═════ ... ``` > on this PR ``` ═════ 51 possible errors found ═════ ... ``` And it seems like this PR makes JIT slightly faster: > on master ```julia ~/julia/julia master ❯ ./usr/bin/julia -e '@time using Plots; @time plot(rand(10,3));' 3.659865 seconds (7.19 M allocations: 497.982 MiB, 3.94% gc time, 0.39% compilation time) 2.696410 seconds (3.62 M allocations: 202.905 MiB, 7.49% gc time, 56.39% compilation time) ``` > on this PR ```julia ~/julia/julia avi/jetdemo* 7s ❯ ./usr/bin/julia -e '@time using Plots; @time plot(rand(10,3));' 3.396974 seconds (7.16 M allocations: 491.442 MiB, 4.80% gc time, 0.28% compilation time) 2.591130 seconds (3.48 M allocations: 196.026 MiB, 7.29% gc time, 56.72% compilation time) ```
IanButterworth
changed the title
WIP: Add thread and task info to profile backtraces
ignore
Jul 29, 2021
IanButterworth
pushed a commit
that referenced
this pull request
Jul 11, 2022
…Lang#45790) Currently the `@nospecialize`-d `push!(::Vector{Any}, ...)` can only take a single item and we will end up with runtime dispatch when we try to call it with multiple items: ```julia julia> code_typed(push!, (Vector{Any}, Any)) 1-element Vector{Any}: CodeInfo( 1 ─ $(Expr(:foreigncall, :(:jl_array_grow_end), Nothing, svec(Any, UInt64), 0, :(:ccall), Core.Argument(2), 0x0000000000000001, 0x0000000000000001))::Nothing │ %2 = Base.arraylen(a)::Int64 │ Base.arrayset(true, a, item, %2)::Vector{Any} └── return a ) => Vector{Any} julia> code_typed(push!, (Vector{Any}, Any, Any)) 1-element Vector{Any}: CodeInfo( 1 ─ %1 = Base.append!(a, iter)::Vector{Any} └── return %1 ) => Vector{Any} ``` This commit adds a new specialization that it can take arbitrary-length items. Our compiler should still be able to optimize the single-input case as before via the dispatch mechanism. ```julia julia> code_typed(push!, (Vector{Any}, Any)) 1-element Vector{Any}: CodeInfo( 1 ─ $(Expr(:foreigncall, :(:jl_array_grow_end), Nothing, svec(Any, UInt64), 0, :(:ccall), Core.Argument(2), 0x0000000000000001, 0x0000000000000001))::Nothing │ %2 = Base.arraylen(a)::Int64 │ Base.arrayset(true, a, item, %2)::Vector{Any} └── return a ) => Vector{Any} julia> code_typed(push!, (Vector{Any}, Any, Any)) 1-element Vector{Any}: CodeInfo( 1 ─ %1 = Base.arraylen(a)::Int64 │ $(Expr(:foreigncall, :(:jl_array_grow_end), Nothing, svec(Any, UInt64), 0, :(:ccall), Core.Argument(2), 0x0000000000000002, 0x0000000000000002))::Nothing └── goto JuliaLang#7 if not true 2 ┄ %4 = φ (#1 => 1, JuliaLang#6 => %14)::Int64 │ %5 = φ (#1 => 1, JuliaLang#6 => %15)::Int64 │ %6 = Base.getfield(x, %4, true)::Any │ %7 = Base.add_int(%1, %4)::Int64 │ Base.arrayset(true, a, %6, %7)::Vector{Any} │ %9 = (%5 === 2)::Bool └── goto #4 if not %9 3 ─ goto JuliaLang#5 4 ─ %12 = Base.add_int(%5, 1)::Int64 └── goto JuliaLang#5 5 ┄ %14 = φ (#4 => %12)::Int64 │ %15 = φ (#4 => %12)::Int64 │ %16 = φ (#3 => true, #4 => false)::Bool │ %17 = Base.not_int(%16)::Bool └── goto JuliaLang#7 if not %17 6 ─ goto #2 7 ┄ return a ) => Vector{Any} ``` This commit also adds the equivalent implementations for `pushfirst!`.
IanButterworth
pushed a commit
that referenced
this pull request
Jul 11, 2022
When calling `jl_error()` or `jl_errorf()`, we must check to see if we are so early in the bringup process that it is dangerous to attempt to construct a backtrace because the data structures used to provide line information are not properly setup. This can be easily triggered by running: ``` julia -C invalid ``` On an `i686-linux-gnu` build, this will hit the "Invalid CPU Name" branch in `jitlayers.cpp`, which calls `jl_errorf()`. This in turn calls `jl_throw()`, which will eventually call `jl_DI_for_fptr` as part of the backtrace printing process, which fails as the object maps are not fully initialized. See the below `gdb` stacktrace for details: ``` $ gdb -batch -ex 'r' -ex 'bt' --args ./julia -C invalid ... fatal: error thrown and no exception handler available. ErrorException("Invalid CPU name "invalid".") Thread 1 "julia" received signal SIGSEGV, Segmentation fault. 0xf75bd665 in std::_Rb_tree<unsigned int, std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo>, std::_Select1st<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> >, std::greater<unsigned int>, std::allocator<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> > >::lower_bound (__k=<optimized out>, this=0x248) at /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_tree.h:1277 1277 /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_tree.h: No such file or directory. #0 0xf75bd665 in std::_Rb_tree<unsigned int, std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo>, std::_Select1st<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> >, std::greater<unsigned int>, std::allocator<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> > >::lower_bound (__k=<optimized out>, this=0x248) at /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_tree.h:1277 #1 std::map<unsigned int, JITDebugInfoRegistry::ObjectInfo, std::greater<unsigned int>, std::allocator<std::pair<unsigned int const, JITDebugInfoRegistry::ObjectInfo> > >::lower_bound (__x=<optimized out>, this=0x248) at /usr/local/i686-linux-gnu/include/c++/9.1.0/bits/stl_map.h:1258 #2 jl_DI_for_fptr (fptr=4155049385, symsize=symsize@entry=0xffffcfa8, slide=slide@entry=0xffffcfa0, Section=Section@entry=0xffffcfb8, context=context@entry=0xffffcf94) at /cache/build/default-amdci5-4/julialang/julia-master/src/debuginfo.cpp:1181 #3 0xf75c056a in jl_getFunctionInfo_impl (frames_out=0xffffd03c, pointer=4155049385, skipC=0, noInline=0) at /cache/build/default-amdci5-4/julialang/julia-master/src/debuginfo.cpp:1210 #4 0xf7a6ca98 in jl_print_native_codeloc (ip=4155049385) at /cache/build/default-amdci5-4/julialang/julia-master/src/stackwalk.c:636 JuliaLang#5 0xf7a6cd54 in jl_print_bt_entry_codeloc (bt_entry=0xf0798018) at /cache/build/default-amdci5-4/julialang/julia-master/src/stackwalk.c:657 JuliaLang#6 jlbacktrace () at /cache/build/default-amdci5-4/julialang/julia-master/src/stackwalk.c:1090 JuliaLang#7 0xf7a3cd2b in ijl_no_exc_handler (e=0xf0794010) at /cache/build/default-amdci5-4/julialang/julia-master/src/task.c:605 JuliaLang#8 0xf7a3d10a in throw_internal (ct=ct@entry=0xf070c010, exception=<optimized out>, exception@entry=0xf0794010) at /cache/build/default-amdci5-4/julialang/julia-master/src/task.c:638 JuliaLang#9 0xf7a3d330 in ijl_throw (e=0xf0794010) at /cache/build/default-amdci5-4/julialang/julia-master/src/task.c:654 JuliaLang#10 0xf7a905aa in ijl_errorf (fmt=fmt@entry=0xf7647cd4 "Invalid CPU name \"%s\".") at /cache/build/default-amdci5-4/julialang/julia-master/src/rtutils.c:77 JuliaLang#11 0xf75a4b22 in (anonymous namespace)::createTargetMachine () at /cache/build/default-amdci5-4/julialang/julia-master/src/jitlayers.cpp:823 JuliaLang#12 JuliaOJIT::JuliaOJIT (this=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/jitlayers.cpp:1044 JuliaLang#13 0xf7531793 in jl_init_llvm () at /cache/build/default-amdci5-4/julialang/julia-master/src/codegen.cpp:8585 JuliaLang#14 0xf75318a8 in jl_init_codegen_impl () at /cache/build/default-amdci5-4/julialang/julia-master/src/codegen.cpp:8648 JuliaLang#15 0xf7a51a52 in jl_restore_system_image_from_stream (f=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:2131 JuliaLang#16 0xf7a55c03 in ijl_restore_system_image_data (buf=0xe859c1c0 <jl_system_image_data> "8'\031\003", len=125161105) at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:2184 JuliaLang#17 0xf7a55cf9 in jl_load_sysimg_so () at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:424 JuliaLang#18 ijl_restore_system_image (fname=0x80a0900 "/build/bk_download/julia-d78fdad601/lib/julia/sys.so") at /cache/build/default-amdci5-4/julialang/julia-master/src/staticdata.c:2157 JuliaLang#19 0xf7a3bdfc in _finish_julia_init (rel=rel@entry=JL_IMAGE_JULIA_HOME, ct=<optimized out>, ptls=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/init.c:741 JuliaLang#20 0xf7a3c8ac in julia_init (rel=<optimized out>) at /cache/build/default-amdci5-4/julialang/julia-master/src/init.c:728 JuliaLang#21 0xf7a7f61d in jl_repl_entrypoint (argc=<optimized out>, argv=0xffffddf4) at /cache/build/default-amdci5-4/julialang/julia-master/src/jlapi.c:705 JuliaLang#22 0x080490a7 in main (argc=3, argv=0xffffddf4) at /cache/build/default-amdci5-4/julialang/julia-master/cli/loader_exe.c:59 ``` To prevent this, we simply avoid calling `jl_errorf` this early in the process, punting the problem to a later PR that can update guard conditions within `jl_error*`.
IanButterworth
pushed a commit
that referenced
this pull request
Jul 22, 2023
This makes it easier to correlate LLVM IR with the originating source code by including both argument name and argument type in the LLVM argument variable. <details> <summary>Example 1</summary> ```julia julia> function f(a, b, c, d, g...) e = a + b + c + d f = does_not_exist(e) + e f end f (generic function with 1 method) julia> @code_llvm f(0,0,0,0,0) ``` ```llvm ; @ REPL[1]:1 within `f` define nonnull {}* @julia_f_141(i64 signext %"a::Int64", i64 signext %"b::Int64", i64 signext %"c::Int64", i64 signext %"d::Int64", i64 signext %"g[0]::Int64") #0 { top: %0 = alloca [2 x {}*], align 8 %gcframe3 = alloca [4 x {}*], align 16 %gcframe3.sub = getelementptr inbounds [4 x {}*], [4 x {}*]* %gcframe3, i64 0, i64 0 %1 = bitcast [4 x {}*]* %gcframe3 to i8* call void @llvm.memset.p0i8.i64(i8* align 16 %1, i8 0, i64 32, i1 true) %thread_ptr = call i8* asm "movq %fs:0, $0", "=r"() JuliaLang#7 %tls_ppgcstack = getelementptr i8, i8* %thread_ptr, i64 -8 %2 = bitcast i8* %tls_ppgcstack to {}**** %tls_pgcstack = load {}***, {}**** %2, align 8 ; @ REPL[1]:3 within `f` %3 = bitcast [4 x {}*]* %gcframe3 to i64* store i64 8, i64* %3, align 16 %4 = getelementptr inbounds [4 x {}*], [4 x {}*]* %gcframe3, i64 0, i64 1 %5 = bitcast {}** %4 to {}*** %6 = load {}**, {}*** %tls_pgcstack, align 8 store {}** %6, {}*** %5, align 8 %7 = bitcast {}*** %tls_pgcstack to {}*** store {}** %gcframe3.sub, {}*** %7, align 8 %Main.does_not_exist.cached = load atomic {}*, {}** @0 unordered, align 8 %iscached.not = icmp eq {}* %Main.does_not_exist.cached, null br i1 %iscached.not, label %notfound, label %found notfound: ; preds = %top %Main.does_not_exist.found = call {}* @ijl_get_binding_or_error({}* nonnull inttoptr (i64 139831437630272 to {}*), {}* nonnull inttoptr (i64 139831600565400 to {}*)) store atomic {}* %Main.does_not_exist.found, {}** @0 release, align 8 br label %found found: ; preds = %notfound, %top %Main.does_not_exist = phi {}* [ %Main.does_not_exist.cached, %top ], [ %Main.does_not_exist.found, %notfound ] %8 = bitcast {}* %Main.does_not_exist to {}** %does_not_exist.checked = load atomic {}*, {}** %8 unordered, align 8 %.not = icmp eq {}* %does_not_exist.checked, null br i1 %.not, label %err, label %ok err: ; preds = %found call void @ijl_undefined_var_error({}* inttoptr (i64 139831600565400 to {}*)) unreachable ok: ; preds = %found %.sub = getelementptr inbounds [2 x {}*], [2 x {}*]* %0, i64 0, i64 0 ; @ REPL[1]:2 within `f` ; ┌ @ operators.jl:587 within `+` @ int.jl:87 %9 = add i64 %"b::Int64", %"a::Int64" %10 = add i64 %9, %"c::Int64" ; │ @ operators.jl:587 within `+` ; │┌ @ operators.jl:544 within `afoldl` ; ││┌ @ int.jl:87 within `+` %11 = add i64 %10, %"d::Int64" %12 = getelementptr inbounds [4 x {}*], [4 x {}*]* %gcframe3, i64 0, i64 3 store {}* %does_not_exist.checked, {}** %12, align 8 ; └└└ ; @ REPL[1]:3 within `f` %13 = call nonnull {}* @ijl_box_int64(i64 signext %11) %14 = getelementptr inbounds [4 x {}*], [4 x {}*]* %gcframe3, i64 0, i64 2 store {}* %13, {}** %14, align 16 store {}* %13, {}** %.sub, align 8 %15 = call nonnull {}* @ijl_apply_generic({}* nonnull %does_not_exist.checked, {}** nonnull %.sub, i32 1) store {}* %15, {}** %12, align 8 %16 = call nonnull {}* @ijl_box_int64(i64 signext %11) store {}* %16, {}** %14, align 16 store {}* %15, {}** %.sub, align 8 %17 = getelementptr inbounds [2 x {}*], [2 x {}*]* %0, i64 0, i64 1 store {}* %16, {}** %17, align 8 %18 = call nonnull {}* @ijl_apply_generic({}* inttoptr (i64 139831370516384 to {}*), {}** nonnull %.sub, i32 2) %19 = load {}*, {}** %4, align 8 %20 = bitcast {}*** %tls_pgcstack to {}** store {}* %19, {}** %20, align 8 ; @ REPL[1]:4 within `f` ret {}* %18 } ``` </details> <details> <summary>Example 2</summary> ```julia julia> function g(a, b, c, d; kwarg=0) a + b + c + d + kwarg end g (generic function with 1 method) julia> @code_llvm g(0,0,0,0,kwarg=0) ``` ```llvm ; @ REPL[3]:1 within `g` define i64 @julia_g_160([1 x i64]* nocapture noundef nonnull readonly align 8 dereferenceable(8) %"#1::NamedTuple", i64 signext %"a::Int64", i64 signext %"b::Int64", i64 signext %"c::Int64", i64 signext %"d::Int64") #0 { top: %0 = getelementptr inbounds [1 x i64], [1 x i64]* %"#1::NamedTuple", i64 0, i64 0 ; ┌ @ REPL[3]:2 within `#g#1` ; │┌ @ operators.jl:587 within `+` @ int.jl:87 %1 = add i64 %"b::Int64", %"a::Int64" %2 = add i64 %1, %"c::Int64" ; ││ @ operators.jl:587 within `+` ; ││┌ @ operators.jl:544 within `afoldl` ; │││┌ @ int.jl:87 within `+` %3 = add i64 %2, %"d::Int64" ; │││└ ; │││ @ operators.jl:545 within `afoldl` ; │││┌ @ int.jl:87 within `+` %unbox = load i64, i64* %0, align 8 %4 = add i64 %3, %unbox ; └└└└ ret i64 %4 } ``` </details>
IanButterworth
pushed a commit
that referenced
this pull request
Oct 6, 2023
…#51489) This exposes the GC "stop the world" API to the user, for causing a thread to quickly stop executing Julia code. This adds two APIs (that will need to be exported and documented later): ``` julia> @CCall jl_safepoint_suspend_thread(#=tid=#1::Cint, #=magicnumber=#2::Cint)::Cint # roughly tkill(1, SIGSTOP) julia> @CCall jl_safepoint_resume_thread(#=tid=#1::Cint)::Cint # roughly tkill(1, SIGCONT) ``` You can even suspend yourself, if there is another task to resume you 10 seconds later: ``` julia> ccall(:jl_enter_threaded_region, Cvoid, ()) julia> t = @task let; Libc.systemsleep(10); print("\nhello from $(Threads.threadid())\n"); @CCall jl_safepoint_resume_thread(0::Cint)::Cint; end; ccall(:jl_set_task_tid, Cint, (Any, Cint), t, 1); schedule(t); julia> @time @CCall jl_safepoint_suspend_thread(0::Cint, 2::Cint)::Cint hello from 2 10 seconds (6 allocations: 264 bytes) 1 ``` The meaning of the magic number is actually the kind of stop that you want: ``` // n.b. suspended threads may still run in the GC or GC safe regions // but shouldn't be observable, depending on which enum the user picks (only 1 and 2 are typically recommended here) // waitstate = 0 : do not wait for suspend to finish // waitstate = 1 : wait for gc_state != 0 (JL_GC_STATE_WAITING or JL_GC_STATE_SAFE) // waitstate = 2 : wait for gc_state != 0 (JL_GC_STATE_WAITING or JL_GC_STATE_SAFE) and that GC is not running on that thread // waitstate = 3 : wait for full suspend (gc_state == JL_GC_STATE_WAITING) -- this may never happen if thread is sleeping currently // if another thread comes along and calls jl_safepoint_resume, we also return early // return new suspend count on success, 0 on failure ``` Only magic number 2 is currently meaningful to the user though. The difference between waitstate 1 and 2 is only relevant in C code which is calling this from JL_GC_STATE_SAFE, since otherwise it is a priori known that GC isn't running, else we too would be running the GC. But the distinction of those states might be useful if we have a concurrent collector. Very important warning: if the stopped thread is holding any locks (e.g. for codegen or types) that you then attempt to acquire, your thread will deadlock. This is very likely, unless you are very careful. A future update to this API may try to change the waitstate to give the option to wait for the thread to release internal or known locks.
IanButterworth
pushed a commit
that referenced
this pull request
Mar 12, 2024
…ang#53631) This PR validates the input parameters to the Julia LAPACK wrappers, so that the error messages are more informative. On nightly ```julia julia> using LinearAlgebra julia> LAPACK.geev!('X', 'X', rand(2,2)) ** On entry to DGEEV parameter number 1 had an illegal value ERROR: ArgumentError: invalid argument #1 to LAPACK call ``` This PR ```julia julia> using LinearAlgebra julia> LAPACK.geev!('X', 'X', rand(2,2)) ERROR: ArgumentError: argument #1: jobvl must be one of ('N', 'V'), but 'X' was passed ``` Secondly, moved certain allocations (e.g. in `geevx`) below the validation checks, so that these only happen for valid parameter values. Thirdly, added `require_one_based_indexing` checks to functions where these were missing.
IanButterworth
pushed a commit
that referenced
this pull request
Mar 21, 2024
This is an alternative to JuliaLang#53642 The `dom_edges()` for an exit block in the CFG are empty when computing the PostDomTree so the loop below this may not actually run. In that case, the right semidominator is the ancestor from the DFSTree, which is the "virtual" -1 block. This resolves half of the issue in JuliaLang#53613: ```julia julia> let code = Any[ # block 1 GotoIfNot(Argument(2), 3), # block 2 ReturnNode(Argument(3)), # block 3 (we should visit this block) Expr(:call, throw, "potential throw"), ReturnNode(), # unreachable ] ir = make_ircode(code; slottypes=Any[Any,Bool,Bool]) visited = BitSet() @test !Core.Compiler.visit_conditional_successors(CC.LazyPostDomtree(ir), ir, #=bb=#1) do succ::Int push!(visited, succ) return false end @test 2 ∈ visited @test 3 ∈ visited end Test Passed ``` This needs some tests (esp. since I don't think we have any DomTree tests at all right now), but otherwise should be good to go.
IanButterworth
pushed a commit
that referenced
this pull request
Mar 21, 2024
…iaLang#53642) This commit fixes the first problem that was found while digging into JuliaLang#53613. It turns out that the post-domtree constructed from regular `IRCode` doesn't work for visiting conditional successors for post-opt analysis in cases like: ```julia julia> let code = Any[ # block 1 GotoIfNot(Argument(2), 3), # block 2 ReturnNode(Argument(3)), # block 3 (we should visit this block) Expr(:call, throw, "potential throw"), ReturnNode(), # unreachable ] ir = make_ircode(code; slottypes=Any[Any,Bool,Bool]) visited = BitSet() @test !Core.Compiler.visit_conditional_successors(CC.LazyPostDomtree(ir), ir, #=bb=#1) do succ::Int push!(visited, succ) return false end @test 2 ∉ visited @test 3 ∈ visited end Test Failed at REPL[14]:16 Expression: 2 ∉ visited Evaluated: 2 ∉ BitSet([2]) ``` This might mean that we need to fix on the `postdominates` end, but for now, this commit tries to get around it by using the augmented post domtree in `visit_conditional_successors`. Since the augmented post domtree is enforced to have a single return, we can keep using the current `postdominates` to fix the issue. However, this commit isn't enough to fix the NeuralNetworkReachability segfault as reported in JuliaLang#53613, and we need to tackle the second issue reported there too (JuliaLang#53613 (comment)).
IanButterworth
pushed a commit
that referenced
this pull request
Aug 30, 2024
…aLang#55600) As an application of JuliaLang#55545, this commit avoids the insertion of `:throw_undef_if_not` nodes when the defined-ness of a slot is guaranteed by abstract interpretation. ```julia julia> function isdefined_nothrow(c, x) local val if c val = x end if @isdefined val return val end return zero(Int) end; julia> @code_typed isdefined_nothrow(true, 42) ``` ```diff diff --git a/old b/new index c4980a5c9c..3d1d6d30f0 100644 --- a/old +++ b/new @@ -4,7 +4,6 @@ CodeInfo( 3 ┄ %3 = φ (#2 => x, #1 => #undef)::Int64 │ %4 = φ (#2 => true, #1 => false)::Bool └── goto JuliaLang#5 if not %4 -4 ─ $(Expr(:throw_undef_if_not, :val, :(%4)))::Any -└── return %3 +4 ─ return %3 5 ─ return 0 ) => Int64 ```
IanButterworth
pushed a commit
that referenced
this pull request
Oct 1, 2024
…ang#53631) This PR validates the input parameters to the Julia LAPACK wrappers, so that the error messages are more informative. On nightly ```julia julia> using LinearAlgebra julia> LAPACK.geev!('X', 'X', rand(2,2)) ** On entry to DGEEV parameter number 1 had an illegal value ERROR: ArgumentError: invalid argument #1 to LAPACK call ``` This PR ```julia julia> using LinearAlgebra julia> LAPACK.geev!('X', 'X', rand(2,2)) ERROR: ArgumentError: argument #1: jobvl must be one of ('N', 'V'), but 'X' was passed ``` Secondly, moved certain allocations (e.g. in `geevx`) below the validation checks, so that these only happen for valid parameter values. Thirdly, added `require_one_based_indexing` checks to functions where these were missing. (cherry picked from commit dcd1fb2)
IanButterworth
pushed a commit
that referenced
this pull request
Oct 1, 2024
This is an alternative to JuliaLang#53642 The `dom_edges()` for an exit block in the CFG are empty when computing the PostDomTree so the loop below this may not actually run. In that case, the right semidominator is the ancestor from the DFSTree, which is the "virtual" -1 block. This resolves half of the issue in JuliaLang#53613: ```julia julia> let code = Any[ # block 1 GotoIfNot(Argument(2), 3), # block 2 ReturnNode(Argument(3)), # block 3 (we should visit this block) Expr(:call, throw, "potential throw"), ReturnNode(), # unreachable ] ir = make_ircode(code; slottypes=Any[Any,Bool,Bool]) visited = BitSet() @test !Core.Compiler.visit_conditional_successors(CC.LazyPostDomtree(ir), ir, #=bb=#1) do succ::Int push!(visited, succ) return false end @test 2 ∈ visited @test 3 ∈ visited end Test Passed ``` This needs some tests (esp. since I don't think we have any DomTree tests at all right now), but otherwise should be good to go.
IanButterworth
pushed a commit
that referenced
this pull request
Oct 1, 2024
…iaLang#53642) This commit fixes the first problem that was found while digging into JuliaLang#53613. It turns out that the post-domtree constructed from regular `IRCode` doesn't work for visiting conditional successors for post-opt analysis in cases like: ```julia julia> let code = Any[ # block 1 GotoIfNot(Argument(2), 3), # block 2 ReturnNode(Argument(3)), # block 3 (we should visit this block) Expr(:call, throw, "potential throw"), ReturnNode(), # unreachable ] ir = make_ircode(code; slottypes=Any[Any,Bool,Bool]) visited = BitSet() @test !Core.Compiler.visit_conditional_successors(CC.LazyPostDomtree(ir), ir, #=bb=#1) do succ::Int push!(visited, succ) return false end @test 2 ∉ visited @test 3 ∈ visited end Test Failed at REPL[14]:16 Expression: 2 ∉ visited Evaluated: 2 ∉ BitSet([2]) ``` This might mean that we need to fix on the `postdominates` end, but for now, this commit tries to get around it by using the augmented post domtree in `visit_conditional_successors`. Since the augmented post domtree is enforced to have a single return, we can keep using the current `postdominates` to fix the issue. However, this commit isn't enough to fix the NeuralNetworkReachability segfault as reported in JuliaLang#53613, and we need to tackle the second issue reported there too (JuliaLang#53613 (comment)).
IanButterworth
pushed a commit
that referenced
this pull request
Oct 12, 2024
Prior to this, especially on macOS, the gc-safepoint here would cause the process to segfault as we had already freed the current_task state. Rearrange this code so that the GC interactions (except for the atomic store to current_task) are all handled before entering GC safe, and then signaling the thread is deleted (via setting current_task = NULL, published by jl_unlock_profile_wr to other threads) is last. ``` ERROR: Exception handler triggered on unmanaged thread. Process 53827 stopped * thread JuliaLang#5, stop reason = EXC_BAD_ACCESS (code=2, address=0x100018008) frame #0: 0x0000000100b74344 libjulia-internal.1.12.0.dylib`jl_delete_thread [inlined] jl_gc_state_set(ptls=0x000000011f8b3200, state='\x02', old_state=<unavailable>) at julia_threads.h:272:9 [opt] 269 assert(old_state != JL_GC_CONCURRENT_COLLECTOR_THREAD); 270 jl_atomic_store_release(&ptls->gc_state, state); 271 if (state == JL_GC_STATE_UNSAFE || old_state == JL_GC_STATE_UNSAFE) -> 272 jl_gc_safepoint_(ptls); 273 return old_state; 274 } 275 STATIC_INLINE int8_t jl_gc_state_save_and_set(jl_ptls_t ptls, Target 0: (julia) stopped. (lldb) up frame #1: 0x0000000100b74320 libjulia-internal.1.12.0.dylib`jl_delete_thread [inlined] jl_gc_state_save_and_set(ptls=0x000000011f8b3200, state='\x02') at julia_threads.h:278:12 [opt] 275 STATIC_INLINE int8_t jl_gc_state_save_and_set(jl_ptls_t ptls, 276 int8_t state) 277 { -> 278 return jl_gc_state_set(ptls, state, jl_atomic_load_relaxed(&ptls->gc_state)); 279 } 280 #ifdef __clang_gcanalyzer__ 281 // these might not be a safepoint (if they are no-op safe=>safe transitions), but we have to assume it could be (statically) (lldb) frame #2: 0x0000000100b7431c libjulia-internal.1.12.0.dylib`jl_delete_thread(value=0x000000011f8b3200) at threading.c:537:11 [opt] 534 ptls->root_task = NULL; 535 jl_free_thread_gc_state(ptls); 536 // then park in safe-region -> 537 (void)jl_gc_safe_enter(ptls); 538 } ``` (test incorporated into JuliaLang#55793)
IanButterworth
pushed a commit
that referenced
this pull request
Oct 16, 2024
Rebase and extension of @alexfanqi's initial work on porting Julia to RISC-V. Requires LLVM 19. Tested on a VisionFive2, built with: ```make MARCH := rv64gc_zba_zbb MCPU := sifive-u74 USE_BINARYBUILDER:=0 DEPS_GIT = llvm override LLVM_VER=19.1.1 override LLVM_BRANCH=julia-release/19.x override LLVM_SHA1=julia-release/19.x ``` ```julia-repl ❯ ./julia _ _ _ _(_)_ | Documentation: https://docs.julialang.org (_) | (_) (_) | _ _ _| |_ __ _ | Type "?" for help, "]?" for Pkg help. | | | | | | |/ _` | | | | |_| | | | (_| | | Version 1.12.0-DEV.1374 (2024-10-14) _/ |\__'_|_|_|\__'_| | riscv/25092a3982* (fork: 1 commits, 0 days) |__/ | julia> versioninfo(; verbose=true) Julia Version 1.12.0-DEV.1374 Commit 25092a3* (2024-10-14 09:57 UTC) Platform Info: OS: Linux (riscv64-unknown-linux-gnu) uname: Linux 6.11.3-1-riscv64 #1 SMP Debian 6.11.3-1 (2024-10-10) riscv64 unknown CPU: unknown: speed user nice sys idle irq #1 1500 MHz 922 s 0 s 265 s 160953 s 0 s #2 1500 MHz 457 s 0 s 280 s 161521 s 0 s #3 1500 MHz 452 s 0 s 270 s 160911 s 0 s #4 1500 MHz 638 s 15 s 301 s 161340 s 0 s Memory: 7.760246276855469 GB (7474.08203125 MB free) Uptime: 16260.13 sec Load Avg: 0.25 0.23 0.1 WORD_SIZE: 64 LLVM: libLLVM-19.1.1 (ORCJIT, sifive-u74) Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores) Environment: HOME = /home/tim PATH = /home/tim/.local/bin:/usr/local/bin:/usr/bin:/bin:/usr/games TERM = xterm-256color julia> ccall(:jl_dump_host_cpu, Nothing, ()) CPU: sifive-u74 Features: +zbb,+d,+i,+f,+c,+a,+zba,+m,-zvbc,-zksed,-zvfhmin,-zbkc,-zkne,-zksh,-zfh,-zfhmin,-zknh,-v,-zihintpause,-zicboz,-zbs,-zvknha,-zvksed,-zfa,-ztso,-zbc,-zvknhb,-zihintntl,-zknd,-zvbb,-zbkx,-zkt,-zvkt,-zicond,-zvksh,-zvfh,-zvkg,-zvkb,-zbkb,-zvkned julia> @code_native debuginfo=:none 1+2. .text .attribute 4, 16 .attribute 5, "rv64i2p1_m2p0_a2p1_f2p2_d2p2_c2p0_zicsr2p0_zifencei2p0_zmmul1p0_zba1p0_zbb1p0" .file "+" .globl "julia_+_3003" .p2align 1 .type "julia_+_3003",@function "julia_+_3003": addi sp, sp, -16 sd ra, 8(sp) sd s0, 0(sp) addi s0, sp, 16 fcvt.d.l fa5, a0 ld ra, 8(sp) ld s0, 0(sp) fadd.d fa0, fa5, fa0 addi sp, sp, 16 ret .Lfunc_end0: .size "julia_+_3003", .Lfunc_end0-"julia_+_3003" .type ".L+Core.Float64#3005",@object .section .data.rel.ro,"aw",@progbits .p2align 3, 0x0 ".L+Core.Float64#3005": .quad ".L+Core.Float64#3005.jit" .size ".L+Core.Float64#3005", 8 .set ".L+Core.Float64#3005.jit", 272467692544 .size ".L+Core.Float64#3005.jit", 8 .section ".note.GNU-stack","",@progbits ``` Lots of bugs guaranteed, but with this we at least have a functional build and REPL for further development by whoever is interested. Also requires Linux 6.4+, since the fallback processor detection used here relies on LLVM's `sys::getHostCPUFeatures`, which for RISC-V is implemented using hwprobe introduced in 6.4. We could probably add a fallback that parses `/proc/cpuinfo`, either by building a CPU database much like how we've done for AArch64, or by parsing the actual ISA string contained there. That would probably also be a good place to add support for profiles, which are supposedly the way forward to package RISC-V binaries. That can happen in follow-up PRs though. For now, on older kernels, use the `-C` arg to Julia to specify an ISA. Co-authored-by: Alex Fan <alex.fan.q@gmail.com>
IanButterworth
pushed a commit
that referenced
this pull request
Oct 24, 2024
…uliaLang#56300) The pipeline-prints test currently fails when running on an aarch64-macos device: ``` /Users/tim/Julia/src/julia/test/llvmpasses/pipeline-prints.ll:309:23: error: AFTERVECTORIZATION: expected string not found in input ; AFTERVECTORIZATION: vector.body ^ <stdin>:2:40: note: scanning from here ; *** IR Dump Before AfterVectorizationMarkerPass on julia_f_199 *** ^ <stdin>:47:27: note: possible intended match here ; *** IR Dump Before AfterVectorizationMarkerPass on jfptr_f_200 *** ^ Input file: <stdin> Check file: /Users/tim/Julia/src/julia/test/llvmpasses/pipeline-prints.ll -dump-input=help explains the following input dump. Input was: <<<<<< 1: opt: WARNING: failed to create target machine for 'x86_64-unknown-linux-gnu': unable to get target for 'x86_64-unknown-linux-gnu', see --version and --triple. 2: ; *** IR Dump Before AfterVectorizationMarkerPass on julia_f_199 *** check:309'0 X~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ error: no match found 3: define i64 @julia_f_199(ptr addrspace(10) noundef nonnull align 16 dereferenceable(40) %0) #0 !dbg !4 { check:309'0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4: top: check:309'0 ~~~~~ 5: %1 = call ptr @julia.get_pgcstack() check:309'0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 6: %ptls_field = getelementptr inbounds ptr, ptr %1, i64 2 check:309'0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 7: %ptls_load45 = load ptr, ptr %ptls_field, align 8, !tbaa !8 check:309'0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . . . 42: check:309'0 ~ 43: L41: ; preds = %L41.loopexit, %L17, %top check:309'0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 44: %value_phi10 = phi i64 [ 0, %top ], [ %7, %L17 ], [ %.lcssa, %L41.loopexit ] check:309'0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 45: ret i64 %value_phi10, !dbg !52 check:309'0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 46: } check:309'0 ~~ 47: ; *** IR Dump Before AfterVectorizationMarkerPass on jfptr_f_200 *** check:309'0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ check:309'1 ? possible intended match 48: ; Function Attrs: noinline optnone check:309'0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 49: define nonnull ptr addrspace(10) @jfptr_f_200(ptr addrspace(10) %0, ptr noalias nocapture noundef readonly %1, i32 %2) #1 { check:309'0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 50: top: check:309'0 ~~~~~ 51: %3 = call ptr @julia.get_pgcstack() check:309'0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 52: %4 = getelementptr inbounds ptr addrspace(10), ptr %1, i32 0 check:309'0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . . . >>>>>> -- ******************** Failed Tests (1): Julia :: pipeline-prints.ll ``` The problem is that these tests assume x86_64, which fails because the target isn't available, so it presumably uses the native target which has different vectorization characteristics: ``` ❯ ./usr/tools/opt --load-pass-plugin=libjulia-codegen.dylib -passes='julia' --print-before=AfterVectorization -o /dev/null ../../test/llvmpasses/pipeline-prints.ll ./usr/tools/opt: WARNING: failed to create target machine for 'x86_64-unknown-linux-gnu': unable to get target for 'x86_64-unknown-linux-gnu', see --version and --triple. ``` There's other tests that assume this (e.g. the `fma` cpufeatures one), but they don't fail, so I've left them as is.
IanButterworth
pushed a commit
that referenced
this pull request
Nov 18, 2024
This is an alternative to JuliaLang#53642 The `dom_edges()` for an exit block in the CFG are empty when computing the PostDomTree so the loop below this may not actually run. In that case, the right semidominator is the ancestor from the DFSTree, which is the "virtual" -1 block. This resolves half of the issue in JuliaLang#53613: ```julia julia> let code = Any[ # block 1 GotoIfNot(Argument(2), 3), # block 2 ReturnNode(Argument(3)), # block 3 (we should visit this block) Expr(:call, throw, "potential throw"), ReturnNode(), # unreachable ] ir = make_ircode(code; slottypes=Any[Any,Bool,Bool]) visited = BitSet() @test !Core.Compiler.visit_conditional_successors(CC.LazyPostDomtree(ir), ir, #=bb=#1) do succ::Int push!(visited, succ) return false end @test 2 ∈ visited @test 3 ∈ visited end Test Passed ``` This needs some tests (esp. since I don't think we have any DomTree tests at all right now), but otherwise should be good to go.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
No description provided.